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ABSTRACT

The atmospheric hydrostatic Flow-Following Icosahedral Model (FIM), developed for medium-range weather

prediction, provides a unique three-dimensional grid structure—a quasi-uniform icosahedral horizontal grid and an

adaptive quasi-Lagrangian vertical coordinate. To extend the FIM framework to subseasonal time scales, an

icosahedral-grid rendition of the Hybrid Coordinate Ocean Model (iHYCOM) was developed and coupled to

FIM. By sharing a common horizontal mesh, air–sea fluxes between the two models are conserved locally and

globally. Bothmodels use similar adaptive hybrid vertical coordinates.Another unique aspect of the coupledmodel

(referred to as FIM–iHYCOM) is the use of theGrell–Freitas scale-aware convective scheme in the atmosphere.A

multiyear retrospective study is necessary to demonstrate the potential usefulness and allow for immediate bias

correction of a subseasonal prediction model. In these two articles, results are shown based on a 16-yr period of

hindcasts from FIM–iHYCOM, which has been providing real-time forecasts out to a lead time of 4 weeks for

NOAA’s Subseasonal Experiment (SubX) starting July 2017. Part I provides an overview of FIM–iHYCOM and

compares its systematic errors at subseasonal time scales to those ofNOAA’s operational Climate Forecast System

version 2 (CFSv2). Part II uses bias-corrected hindcasts to assess both deterministic and probabilistic subseasonal

skill of FIM–iHYCOM.FIM–iHYCOMhas smaller biases thanCFSv2 for somefields (includingprecipitation) and

comparable biases for other fields (including sea surface temperature). FIM–iHYCOM also has less drift in bias

between weeks 1 and 4 than CFSv2. The unique grid structure and physics suite of FIM–iHYCOM is expected to

add diversity to multimodel ensemble forecasts at subseasonal time scales in SubX.

1. Introduction

Over the past decade, there has been a significant ef-

fort (e.g., Brunet et al. 2010; Kirtman et al. 2014; Vitart

et al. 2017) to predict the state of the atmosphere at

subseasonal time scales (3–4 weeks to 2 months). This

time scale falls into a gap between numerical weather

prediction (NWP) and climate prediction. NWP time

scales fall within the theoretical deterministic pre-

dictability limit of ;2 weeks at midlatitudes (LorenzCorresponding author: Shan Sun, shan.sun@noaa.gov
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1969), and large-scale external forcings to the atmo-

sphere (such as from the ocean) generally evolve much

more slowly than the rapid upscale error growth within

the atmosphere. In contrast, the main concern with

seasonal, interannual, and longer-term climate pre-

diction of the atmosphere is on the evolution of the

external forcings.

The challenge with forecasting at subseasonal time

scales is stated well by Vitart et al. (2017, p. 164): ‘‘. . .the

lead time is sufficiently long that much of the memory of

the atmospheric initial conditions is lost and it is too

short for the variability of the ocean to have a strong

influence.’’ Naturally, then, there have been two ap-

proaches toward subseasonal forecasting, both of which

are found in themodels contributing to the Subseasonal-

to-Seasonal Project (established by the World Meteo-

rological Organization as a joint project between the

World Weather Research Programme and World Cli-

mate Research Programme; Vitart et al. 2017). The first

is ‘‘climate down,’’ in which seasonal or longer-range

climate models are simply run with higher-frequency

(daily) output typically for shorter times. Examples

include, but are not limited to, the National Oceanic

and Atmospheric Administration (NOAA) opera-

tional Climate Forecast System version 2 [CFSv2; Saha

et al. (2014, hereafter S14)]; the forecast-oriented low

ocean resolution version of the Geophysical Fluid

Dynamics Laboratory (GFDL) Coupled Model version

2.5 (FLOR; Vecchi et al. 2014); and the Met Office

Global Seasonal forecast system version 5 (GloSea5;

MacLachlan et al. 2015). The second approach, which

for reasons discussed in the next paragraph has not been

as common, is ‘‘weather up,’’ in which forecasts from

NWP models are extended beyond 2 weeks. Exam-

ples of ‘‘weather up’’ subseasonal forecasts from NWP

models include the Canadian Global Environmental

Prediction System (GEPS; Lin et al. 2016); the Global

Ensemble Forecast System (GEFS; Zhu et al. 2017);

and the GLOBO model run at the ISAC Institute of

the Italian National Research Council (Mastrangelo

et al. 2012).

The quasi-uniform horizontal-grid coupled model

presented here has its origins in NWP and thus is a good

example of the ‘‘weather up’’ approach. Typically, NWP

models do not have a dynamical forward model to pre-

dict sea surface temperature (SST) because SST—which

is a strong forcing to the atmospheric system—generally

exhibits little to no change on NWP time scales. Instead,

NWP models often start with observationally con-

strained SST fields. Over the course of the simulation,

these models usually either (i) retain the initial SST

anomaly on top of a time-dependent climatology (e.g.,

GEPS; Lin et al. 2016) or (ii) relax the initial SST toward

climatology (e.g., GLOBO; Mastrangelo et al. 2012).

Zhu et al. (2017) tested several approaches to provide

SST information to the atmosphere-only GEFS and

found the best performance, in terms of subseasonal

forecast skill, from a ‘‘two-tiered’’ method in which bias-

corrected SST forecasts from CFSv2 were used.

In general, the main challenge for ‘‘weather up’’

subseasonal prediction is determining the level of com-

plexity needed for prognostic SST. To more fully ad-

dress Earth system processes likely important for

subseasonal time scales, it was decided to couple the

atmospheric model [the Flow-Following Icosahedral

Model (FIM); Bleck et al. 2015] to a full-fledged three-

dimensional ocean model [an icosahedral-grid rendition

of the Hybrid Coordinate Ocean Model (iHYCOM); cf.

Bleck 2002].

Two relevant aspects of the ocean model used here

are that it has the same icosahedron-based quasi-

uniform horizontal grid as FIM, thereby allowing for

perfect local conservation of air–sea fluxes and com-

pletely avoiding coastline discrepancies between atmo-

sphere and ocean, and that it employs a similar kind of

quasi-Lagrangian vertical coordinate as FIM.

The coupled FIM–iHYCOM system is currently pro-

viding real-time subseasonal forecasts out to 4 weeks to

NOAA’s Subseasonal Experiment (SubX; NOAA

2017); see section 2 below. There has already been some

research into subseasonal prediction with this model.

Green et al. (2017) found that a version of FIM–iHYCOM

using an older variant of the Grell and Freitas (2014)

convective scheme yielded similar predictive skill as

CFSv2 in two bivariate indices representing the

Madden–Julian oscillation (MJO; Madden and Julian

1971, 1972) and smaller errors than CFSv2 in zonal

winds at 850 and 200 hPa in the tropics. The MJO is

responsible for most of the intraseasonal (30–90 day)

tropical variability (Zhang 2005). It impacts the entire

Earth system (Zhang 2013) and thus is seen as a key to

subseasonal predictive skill.

A comprehensive evaluation of the overall perfor-

mance of FIM–iHYCOM is necessary to determine its

long-term prospects as a competitive subseasonal pre-

diction model. Such an evaluation is presented in two

articles: this study (Part I) focuses on systematic errors

of the model compared to CFSv2. Sun et al. (2018,

hereafter Part II) evaluates forecast skill, from both

FIM–iHYCOM and CFSv2, of various subseasonal

phenomena and introduces the methodology for the

associated necessary model bias correction. The re-

mainder of Part I is organized as follows. Section 2 de-

scribes the key features of the FIM–iHYCOM version

participating in SubX, along with data processing

methods for this model, CFSv2, and reanalysis products.
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Section 3 shows model biases for selected fields (in-

cluding SST, precipitation, and 2-m temperature) as a

function of forecast lead time. A discussion and con-

clusions are provided in section 4.

2. Data and experimental methods

a. Model descriptions

1) FIM–IHYCOM

FIM (iHYCOM) employs a vertical coordinate that

transitions from terrain following in the lower atmo-

sphere (isobaric in the near-surface ocean) to one that

adheres to surfaces of potential temperature (potential

density). In the absence of diabatic forcing, isentropic

(isopycnic) surfaces are approximately material, hence

the term ‘‘flow following.’’ The transition between the

different coordinate types is gradual in space and time;

in a nutshell, each coordinate layer perpetually at-

tempts to follow a ‘‘target’’ isentrope (isopycnal), but

in doing so is subject to minimum layer thickness

constraints.

This article and Part II describe results from the FIM–

iHYCOM version used in NOAA’s SubX (NOAA

2017); this version has been referred to as ‘‘FIMr1.1’’ to

denote release version 1.1. Many of the features of

FIMr1.1 are identical to those of the version detailed in

Green et al. (2017). Specifically, the hindcast consists

of a four-member time-lagged ensemble initialized at

1200 and 1800 UTC every Tuesday, plus 0000 and 0600

UTC every Wednesday for the period 1999–2014. The

horizontal resolution is ;60km for both FIM and

iHYCOM. FIM has 64 vertical layers, whereas iHYCOM

has 32.

All of the atmospheric model physics, except for

convective parameterization, come from the 2015 Global

Forecast System (GFS) physics package, as described in

Bleck et al. (2015). There is no stochastic treatment of

any aspect of model physics. Parameterization of shal-

low, midlevel, and deep convection is all done through a

version of the Grell and Freitas (2014) scheme (here-

after ‘‘GF’’) from September 2016. This is a newer

version than that used in Green et al. (2017), where an

older version of GF deep convection and the simplified

Arakawa–Schubert (SAS; Han and Pan 2011) scheme

(for shallow convection) found in the 2015 GFS physics

were used, and no midlevel convection was included.

The only other noteworthy change to FIM–iHYCOM

between Green et al. (2017) and FIMr1.1 is a reduction

of the eddy viscosity coefficient, which had a slight

but beneficial effect on the simulated frequency of

midlatitude blocking (not shown).

All components of FIM–iHYCOM (atmosphere, land

surface, ocean, and sea ice) are initialized from the CFS

Reanalysis [CFSR; Saha et al. (2010, hereafter S10)] for

January 1999 through March 2011 and from the CFSv2

operational analyses (S14) for April 2011 through

December 2014.1 The methods for horizontal and ver-

tical interpolation to the FIM–iHYCOM grid are de-

scribed in Bleck et al. (2010, 2015). Soil temperature and

soil moisture are specified at the nearest grid point from

the CFSR data. However, it is important to note that

FIM–iHYCOM uses the Moderate Resolution Imaging

Spectroradiometer (MODIS)-derived classification of

land-surface properties, whereas CFSR (and CFSv2)

use a different land-surface classification (S10, p. 1038;

S14) based on the United States Geological Survey land

use; see Smirnova et al. (2016) for a comparison of dif-

ferent land-surface classifications within short-term re-

gional NWP modeling. More details of the iHYCOM

ocean model, sea ice prediction, and FIM–iHYCOM’s

freshwater budget closure are provided in appendixes

A, B, and C, respectively.

2) CFSV2

Simulations from CFSv2 were also examined to

compare with FIM–iHYCOM. As detailed in S14,

CFSv2 is a coupled system. The hydrostatic atmospheric

model is run at ;100-km resolution with 64 hybrid

vertical layers, while the ocean is simulated with version

4 of the Modular OceanModel on a different horizontal

grid finer than the atmospheric model (ocean resolution

of 0.58 or higher; S10, 1031–1032). Recall that this con-

trasts with FIM–iHYCOM, which is laid out on match-

ing atmospheric and oceanic horizontal grids. CFSv2

employs a cycling data assimilation scheme, namely,

CFSR (S10). Because FIM–iHYCOM also uses these

same initial conditions, subject to the unavoidable hor-

izontal and vertical remapping, it is convenient to per-

form verification against CFSR—despite the fact that

CFSv2, in contrast to FIM–iHYCOM, has (nearly)

identical model physics to CFSR (cf. S14, p. 2187).

b. Verification and postprocessing

1) COMMON DATA PERIOD FOR BOTH MODELS

We use (re)forecasts from FIM–iHYCOMand CFSv2

performed over identical time periods, at the same

initialization frequency, and with the same number

of ensemble members in order to facilitate a con-

trolled comparison. Since many of the CFSv2 hindcasts

1 For simplicity, both CFS Reanalysis and CFSv2 operational

analyses will be referred to as CFSR henceforth.
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with initial dates from 1 January to 31 March 2011 are

partially or completely missing from public NOAA

data sources, it was decided that for this article, two

common forecast initialization periods be used: January

1999–December 2010 and April 2011–December 2014

(i.e., FIM–iHYCOM reforecasts from January through

March 2011 were not used2). Therefore, there are 14

complete boreal winter [December–February (DJF)]

‘‘targeted’’ verifications from 1999/2000 to 2009/10 and

2011/12 to 2013/14 and 16 complete boreal summer

[June–August (JJA)] verifications used in this article.

Following, in general, the SubX protocol, the reforecast

schedule for FIM–iHYCOM (four times weekly) in-

troduced additional limitations to a common data period

withCFSv2 (scheduled at least four times daily). Thus, as in

Green et al. (2017), only a subset of CFSv2 data is consid-

ered here: the 1200 and 1800 UTC Tuesday, plus 0000 and

0600 UTC Wednesday, control initializations.

2) VERIFICATION

As noted above, because both FIM–iHYCOM and

CFSv2 use the same CFSR initial conditions, it is con-

venient to verify all reforecasts against CFSR. It could be

argued that this provides an unfair advantage to CFSv2

because CFSR is derived from that model’s cycled data as-

similation, which uses the same model physics including

for convection. There is some validity to this argument—

especially for very short forecast lead times (i.e., a few

days)—because analyses of many fields, including pre-

cipitation and near-surface temperature, depend on pa-

rameterization schemes, especially over oceans and

other data-sparse regions. Nevertheless, only performing

verification against an independent reanalysis, such as

ERA-Interim (Dee et al. 2011), is not without its own

limitations. For example, different surface layer physics

in ERA-Interim can yield 2-m temperature analyses that

are noticeably different fromCFSR in certain places such

as Antarctica—to the point where both FIM–iHYCOM

and CFSv2 forecasts consistently have much larger

‘‘errors’’ when verified against ERA-Interim rather than

CFSR (not shown). We do not claim that CFSR provides

analyses closer to the ‘‘truth’’ than ERA-Interim; rather,

verification against CFSR gives a much better sense of

how the climatologies of the models drift away from the

climatology of the initial conditions. Thus, most of the

results presented in this article and in Part II focus on

verification against CFSR, although other analysis prod-

ucts are used on occasion (discussed as appropriate).

Following widespread practice for subseasonal fore-

casts (e.g., Vitart 2004; Zhu et al. 2014; Lin et al. 2016),

verification in this article is based on weekly averages as

functions of both forecast lead week and target season.

Forecast lead week is straightforward, given that the

common period for FIM–iHYCOM and CFSv2 de-

scribed above has initializations on a weekly basis cen-

tered on midweek. Thus, lead day 1 is defined as the first

Wednesday, and lead day 7 is the following Tuesday;

lead week 1 is the average of lead days 1–7 (Wednesday–

Tuesday). Lead weeks 2, 3, and 4 are also Wednesday–

Tuesday averages. For verification, Wednesday–Tuesday

averages of daily analysis fields are taken to get weekly

analyses.

Compositing verification by target season is best il-

lustrated by example. Consider the target season to

be DJF. For the forecasts starting on Wednesday,

14 November 2012, the midweek dates of weeks 1, 2, 3,

and 4 are, respectively, the Saturdays of 17 November,

24 November, 1 December, and 8 December. Because

the Saturdays of weeks 3 and 4 fall into December,

these forecasts are placed into the week 3 and 4 bins of

DJF, whereas the week 1 and 2 forecasts are not binned

into DJF. By performing this process over 14 DJF

seasons, a fairly large set of forecasts with lead weeks

1–4 that verify in DJF can be obtained. The result is

that the DJF seasonal climatology from analyses can be

compared with the DJF seasonal climatologies for both

FIM–iHYCOM and CFSv2 for forecast lead weeks 1

through 4. As expected (and shown later in section 3),

differences between the DJF analysis climatology and

the weekly DJF forecast climatologies grow as a func-

tion of forecast lead week.

3) MODEL POSTPROCESSING

As mentioned earlier, the common initialization

times for FIM–iHYCOM and CFSv2 are 1200 and 1800

UTC every Tuesday, plus 0000 and 0600 UTC every

Wednesday. The NOAA SubX protocol requires data

to be provided as daily averages from 0000 to 2359

UTC (i.e., an effective 24-h period that does not use

0000 UTC from 2 consecutive days). FIM–iHYCOM

was configured to output daily averages starting at every

0000 UTC regardless of the model initialization time;3

this is different from the hindcast dataset used by Green

et al. (2017), in which output was saved every 6h. A

2 The only exception is for the hindcast used to build the

FIM–iHYCOM model climatology, in which the full 16-yr period

was included (see Part II).

3 It was decided that the lead day 1 forecast from the 0000

UTC Wednesday initialization (m03 in Fig. 1) be copied to the

0600 UTC Wednesday initialization (m04 in Fig. 1) because m04

does not have any information for the first 6 h of day 1, and the

resulting discrepancy between lead days 1 and 2 can be ignored in

the context of subseasonal prediction.
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schematic is shown in Fig. 1. While this archiving strat-

egy may not be ideal for a time-lagged ensemble, the

focus on weekly averages means that there will only be a

minimal impact on the week 1 forecast, especially when

the four-member time-lagged ensemble average is con-

sidered, as is done for the entirety of this article.

Moreover, for consistency with FIM–iHYCOM, the

same archiving procedure (Fig. 1) was performed for the

CFSv2 dataset. Finally, following the SubX protocol (cf.

Pegion 2017), all data sources were converted to a

common 18318 grid on which all verification was

performed.

3. Seasonal biases

Most of the results presented here are for different

lead weeks with a target season of DJF; these results,

especially when compared with JJA target season re-

sults, are often more meaningful than showing annual

biases because seasonal biases can be of opposite sign

and, thus, cancel out over the whole year. Here, the

focus is on fields that are important for subseasonal

forecasting, namely, SST, 2-m temperature (hereafter

T2m), and precipitation. Moreover, at subseasonal time

scales, there can be global influences on regional

weather, so even though the focus of SubX is on North

America, it is imperative to investigate model biases

worldwide.

a. Boreal winter

1) LARGE-SCALE OVERVIEW

SST, whose daily average evolves slowly relative to

most atmospheric fields, can be quite important for

subseasonal prediction: for example, Green et al. (2017)

showed that running FIM in atmosphere-only mode

(i.e., uncoupled to iHYCOM, albeit with slowly evolving

SST based on monthly observations) yielded signifi-

cantly worse predictive skill of two MJO indices. A

multitude of other studies (e.g., Woolnough et al. 2007;

Pegion and Kirtman 2008; Kim et al. 2008, 2010; Fu et al.

2013; Seo et al. 2014; Klingaman and Woolnough 2014;

DeMott et al. 2015) have investigated the role of air–sea

coupling on the MJO and its prediction skill. Figure 2

shows SST biases (verified against CFSR) for the DJF

target season at forecast lead weeks 1 and 4 for both

FIM–iHYCOM and CFSv2. The Arctic Ocean, gener-

ally speaking, is completely frozen over with sea ice

during this period. For areas with sea ice, SST is

actually a surface skin temperature for CFSR and both

models. Regardless, in sea ice areas, there are noticeable

discrepancies in skin temperature between CFSR and

both models, but particularly FIM–iHYCOM (not

shown, although signs of this issue are evident in Fig. 2

just north of the Aleutian Islands, as well as in Hudson

Bay). S14 describe in detail issues with sea ice, albeit

with a focus on boreal summer, in both CFSv2 and its

initial conditions. As discussed in appendix B, iHYCOM

has a simplistic single-layer sea ice model in which skin

temperature during the freezing season is diagnosed by

assuming zero vertical heat flux divergence at the air–ice

interface. The primary cause of the warm ice tempera-

ture bias in FIM–iHYCOM is the use of ice thermal

conductivity throughout the frozen layer without any

consideration of a low-conductivity snow layer on top of

the ice; this was addressed after the release of FIMr1.1

(appendix B). But for FIMr1.1, which is the version of

the model used here and in SubX, all that can be done is

to note sea ice as a known issue.

In areas without sea ice and outside southern oceans

adjacent to Antarctica, DJF SST biases are different in

spatial distribution and sign, but similar in overall

magnitude, for FIM–iHYCOM and CFSv2. Overall, the

tropical and subtropical SST biases by week 4 are cold in

FIM–iHYCOM and warm in CFSv2, especially in the

marine stratus regions off the west coasts of South

America and southern Africa. This warm SST bias in

CFSv2 is also evident in the annual bias plot for 3-month

lead times in S14 (bottom right of their Fig. 9). Both

models have a warm SST bias around the Maritime

Continent—more so with CFSv2. Because of the non-

linear interactions between air–sea fluxes and convec-

tion, errors in both the mean (and variability) of SST

could have implications for relative MJO forecast skill

(e.g., Green et al. 2017).

T2m biases for DJF are shown in Fig. 3; here, the bot-

tom row (Figs. 3e,f) shows the difference between model

weeks 4 and 1 to better illustrate model drift. Some of the

largest biases in these figures are in areas with high and

steep terrain (such as the Himalayas and Andes); these

FIG. 1. Schematic of the weekly four-member time-lagged en-

semble for FIM–iHYCOM: ‘‘m01,’’ ‘‘m02,’’ ‘‘m03,’’ and ‘‘m04’’ are

initialized at 1200 UTC Tuesday, 1800 UTC Tuesday, 0000

UTC Wednesday, and 0600 UTC Wednesday, respectively. Note

m01 and m02 discard the first 12 and 6 h, respectively, and begin

archiving at 24-h intervals starting at 0000 UTC Wednesday. As

described in footnote 3, the day 1 output fromm03 is copied over to

m04 (green arrows) because m04 is missing data for the first 6 h of

the initial Wednesday.
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locally large biases—even in week 1—are likely a conse-

quence of CFSR having a higher native resolution [T382

(;38km); S10] than both FIM–iHYCOM and CFSv2.

Globally averaged temperature biases for all points,

and for land points only, are shown in Table 1. The

strong relationship between biases in SST and T2m over

oceans (cf. Fig. 3 with Fig. 2) is not surprising. Over land,

there is an early and persistent warm bias in CFSv2 over

the Sahara and Arabian Deserts and much of Asia. In

contrast, FIM shows little T2mbias inweek 1, trending to a

cold bias byweek 4 (Table 1). This week 4 cold bias in FIM

extends across the entire Northern Hemisphere landmass,

except for Europe, where there is a warm bias. In general,

however, the trend fromweek 1 toweek4 in bothmodels is

cooling over landmasses (Figs. 3e,f; Table 1).

Biases and drift in DJF precipitation are shown in

Fig. 4. The right column of this figure shows re-

sults from a separate experiment: FIM/SAS, which is

FIG. 2. SST biases (K) for target season DJF for (a),(c) FIM–iHYCOM and (b),(d) CFSv2, both verified against

CFS (re)analysis. (top) Forecast lead week 1 bias; (bottom) forecast lead week 4 bias.

FIG. 3. As in Fig. 2, but for T2m biases (K). Bottom panel shows differences between forecast lead weeks 4 and 1.
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identical to FIMr1.1 (the configuration for SubX and the

primary focus of these articles), except that convection

was parameterized using SAS from the 2015 GFS

physics. It was decided that analyzed precipitation from

the Global Precipitation Climatology Project (GPCP;

Huffman et al. 2001) would be used for verification

purposes rather than CFSR. This decision was made

because CFSR is a cycling data assimilation system, and

the resultant precipitation is strongly influenced by the

imbalances introduced by assimilation. Issues associated

with CFSR precipitation are also described in Zhang

et al. (2012). Tests that used CFSR precipitation for

verification (not shown) do not change our most general

conclusions about the performance of FIM (both

FIMr1.1 and FIM/SAS) and CFSv2 precipitation fore-

casts. Looking at Fig. 4, FIMr1.1 appears to be verifying

closer to GPCP than CFSv2 does, and has less drift from

week 1 to week 4. Both results are somewhat surprising

because CFSv2 has cycling data assimilation (cf. Fig. 1 of

S10), whereas FIMr1.1 is ‘‘cold started’’ (initial condi-

tions taken directly fromCFSRwith no FIM-native data

assimilation) and uses a different convection scheme

(GF) than the model providing the initial conditions

(SAS in CFS). While FIMr1.1 precipitation is far from

perfect, it does not have nearly the same magnitude of

biases across much of the Pacific Ocean or the sub-

stantial wet biases over the northern half of theWestern

Hemisphere that CFSv2 does. All three runs have a

global area-averaged wet bias (Table 2) relative to

GPCP; FIMr1.1 has the smallest biases, followed by

FIM/SAS, with CFSv2 exhibiting the largest biases.

From Fig. 4, the drift in FIMr1.1 precipitation (week 1

to 4) is smaller than that of CFSv2, which is consis-

tent with the global area-weighted averages shown

in Table 2: the DJF global precipitation increase in

FIMr1.1 is;0.08 mm day21, compared with an increase

of ;0.15 mm day21 for CFSv2. The drift of FIM/SAS is

even smaller (;0.03mm day21).

TABLE 1. Weekly averaged global T2m biases (verified against CFSR, in K) for FIM–iHYCOM and CFSv2 forecasts [combined land

and ocean outside parentheses; land-only points inside parentheses] verifying in the DJF target season [CFSR climatology: 286.02K

(276.68K)] and the JJA target season [CFSR climatology: 289.51K (287.71K)].

DJF JJA

FIM CFSv2 FIM CFSv2

Lead week 1 20.01 (20.18) 0.20 (0.43) 20.15 (0.01) 0.12 (0.15)

Lead week 2 20.13 (20.51) 0.05 (0.12) 20.29 (0.04) 0.02 (20.02)

Lead week 3 20.20 (20.70) 20.05 (20.12) 20.34 (0.05) 20.01 (20.08)

Lead week 4 20.23 (20.81) 20.10 (20.27) 20.37 (0.05) 20.25 (20.13)

FIG. 4. As in Fig. 3, but for precipitation verified against GPCP (mm day21). Note that the right column contains results from the

FIM/SAS experiment described in the text.
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So far, no momentum or mass fields (i.e., circulation-

related fields) have been examined. Figure 5 shows the

DJF biases in 500-hPa geopotential height (H500)

poleward of 208N for weeks 1 and 4. In week 1, CFSv2

has larger areas of bias. By week 4, both models have

an overall negative height bias in the Northern Hemi-

sphere, somewhat stronger in CFSv2. These may be

related to the cold bias in these regions (cf. Fig. 3).

FIM–iHYCOM has strong negative height biases in

the general areas of the Aleutian and Icelandic lows;

CFSv2 also has a fairly strong negative height bias

between Alaska and Hawaii, albeit centered at a lower

latitude. These biases have implications for both the

predictive skill and relative frequency of tropospheric

blocking events (D’Andrea et al. 1998). A more thor-

ough investigation of blocking—which can impact

weather on subseasonal time scales (e.g., Matsueda

2011)—is left for the Part II companion paper.

2) ERRORS OVER NORTH AMERICA

Given the focus of SubX on subseasonal prediction

over North America, it is worthwhile to show in more

detail the systematic errors in T2m and precipitation

over this region (Figs. 6, 7, respectively). Byweek 4, both

FIM–iHYCOM and CFSv2 show a cold bias for DJF.

FIM–iHYCOMhas a somewhat smaller drift fromweek

1 to 4, whereas CFSv2 shows a strong trend toward

colder conditions. Because of a mistreatment of the

land-surface type in the version of FIM–iHYCOM

(FIMr1.1) used for SubX (real-time and retrospective)

and for these articles, large lakes, including the Great

Lakes, were erroneously classified as dry land. Conse-

quently, the Great Lakes are much too cold in the

winter and too warm in the summer. Although the in-

consistency has since been removed, we did not deem

this error to be substantial enough to warrant an im-

mediate rerun of the entire 16-yr hindcast, especially

before the start of SubX in July 2017. Moreover, sys-

tematic bias correction will remove most of the direct

local impact of the erroneous classification, although it is

likely that there are some secondary impacts that cannot

be removed. For the time being, this will be documented

as a known issue for SubX users.

For DJF precipitation biases over North America

(Fig. 7), FIMr1.1 generally has smaller errors both in

magnitude and spatial coverage by week 4 than

CFSv2. In FIMr1.1, there is a dry bias in both weeks 1

and 4 in the central United States, a wet bias in Central

America (Figs. 7a,c), and an increasingly wet bias over

the southeastern United States and nearby bodies of

water (Fig. 7e). CFSv2, by contrast, has a strong and

growing wet bias over Mexico, extending into much of

the United States and the western Caribbean. Again,

in terms of precipitation, FIMr1.1 is closer to GPCP

and exhibits less change as a function of lead time than

does CFSv2.

b. Boreal summer

We next present biases during the boreal summer

(JJA) but with less detail than for DJF. The boreal

summer SST biases (Fig. 8) are slight only for week 1. By

week 4, there are substantial warm biases in CFSv2 over

the marine stratus regions west of the Americas, as well

as in the North Pacific and Atlantic regions and near the

Maritime Continent. FIM–iHYCOM shows some cold

SST biases in week 4 equatorward of ;458 latitude in

both hemispheres.

Figures 9 and 10 focus on T2m and precipitation bia-

ses over most of the globe (following Figs. 3, 4) for JJA.

For week 1, CFSv2 again has a warm bias over northern

Africa and the Arabian Peninsula; FIM has a warm bias

in the Middle East and a cold bias in South America.

The trend (week 1 to 4) in T2m bias (Figs. 9c,e) for JJA

is opposite that of DJF in the Northern Hemisphere

(Figs. 3c,e), with cooling over western Europe and

warming over other landmasses. Over land, CFSv2 has a

cooling trend in JJA (Table 1), which is most noticeable

in the Southern Hemisphere and Africa. For both

models, the SST biases shown in Fig. 8 begin to appear in

T2m over the ocean by week 4. The inland lake problem

with FIM–iHYCOM discussed earlier is also evident

(best seen over the Caspian Sea in Figs. 9a,c) but does

TABLE 2. As in Table 1, but for global (land and ocean) precipitation biases (mm day21) verified against GPCP (DJF climatology:

2.65mm day21; JJA climatology: 2.69mm day21). The FIM/SAS columns are based on a parallel experiment identical to FIMr1.1

[with Grell and Freitas (2014)-based convection as described in the text], but with convection parameterized instead by the simplified

Arakawa–Schubert scheme.

DJF JJA

FIMr1.1 CFSv2 FIM/SAS FIMr1.1 CFSv2 FIM/SAS

Lead week 1 0.29 0.40 0.41 0.36 0.52 0.50

Lead week 2 0.33 0.47 0.44 0.40 0.58 0.51

Lead week 3 0.36 0.53 0.45 0.42 0.62 0.51

Lead week 4 0.37 0.55 0.44 0.41 0.63 0.50
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not seem to contribute to other errors in T2m or pre-

cipitation. Overall, the T2m biases in week 4 for both

models are generally similar to those in week 1, but

stronger in magnitude.

For JJA precipitation, FIM–iHYCOM (both FIMr1.1

and FIM/SAS) again appears to be less biased than

CFSv2 (Fig. 10). CFSv2 shows a strong moist bias, com-

pared to GPCP, with excessive precipitation in the in-

tertropical convergence zone (week 1) and the equatorial

Indian Ocean (week 4). Both FIM–iHYCOM runs have

similar spatial distributions of wet/dry bias as CFSv2,

but not nearly of the same magnitude (particularly for

FIMr1.1). This is reflected in the area-averaged pre-

cipitation shown in Table 2: while all three models have a

wet bias compared to GPCP in JJA, that of CFSv2 is the

largest and also increases much more between lead week

1 and lead week 4. Again, FIMr1.1 has a smaller wet bias

than FIM/SAS.

The results in section 3 overall indicate that the

biases in FIM–iHYCOM can be considered compa-

rable to those of CFSv2: neither model has uni-

formly smaller biases for all fields examined here.

FIM–iHYCOM—particularly FIMr1.1—shows an ad-

vantage over CFSv2 in precipitation bias (Figs. 4, 7, 10),

FIG. 5. As in Fig. 2, but for H500 biases (m) poleward of 208N latitude.
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despite the fact that FIM–iHYCOM is ‘‘cold started’’

and FIMr1.1 uses a different convection scheme than

the model providing initial conditions. Some of the

improvement in precipitation biases comes from the

use of the Grell and Freitas (2014) scale-aware con-

vective parameterization, as evidenced in the FIM/SAS

test (Figs. 4, 10; Table 2). FIM–iHYCOM does have

larger SST biases than CFSv2 in the Southern Ocean

near Antarctica (Figs. 2, 8), an issue that will be ad-

dressed in future studies investigating cloudiness and

oceanic mixed layer parameterizations. Over the cold

current areas where marine stratus dominates (i.e.,

west of Africa and the Americas), FIM–iHYCOM has

improved SST and T2m results (i.e., smaller biases),

compared to CFSv2.

4. Discussion and conclusions

This is the first of two articles on subseasonal pre-

diction in the FIM–iHYCOM coupled modeling system.

Part I (this article) introduces the coupled model and

focuses on systematic biases in some key fields that

are then compared with NOAA’s operational CFSv2

model. The origins of this new coupled model are in the

atmospheric model that was developed for medium-

range NWP, meaning that for subseasonal purposes, a

‘‘weather up’’ rather than a ‘‘climate down’’ approach

was taken. This article also describes the icosahedral

version of the HYCOM ocean model used in the cou-

pled system. FIM–iHYCOM has strong potential

to provide diversity to subseasonal forecasts, as it is

FIG. 6. As in Fig. 3, but focused over North America.
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endowed with attributes not found in other modeling

systems used for subseasonal to seasonal forecasting:

(i) a different parameterization for convection (follow-

ing Grell and Freitas 2014) and a different land classi-

fication; (ii) finite-volume as opposed to finite-difference

or spectral methods; (iii) quasi-uniform grids that, de-

spite requiring indirect addressing, have tolerable com-

putational overhead and can be efficiently parallelized

on distributed-memory machines; (iv) perfectly matched

atmosphere–ocean horizontal grids that allow for a

consistent coastline and flawless local and global con-

servation of fluxes; and (v) a near-Lagrangian (‘‘flow

following’’) vertical coordinate in both atmosphere and

ocean.Given the importance of convection, especially in

the tropics, on the general circulation, using a variant

of Grell and Freitas (2014) convection will be key to

FIM–iHYCOM’s role in adding diversity to subseasonal

prediction efforts.

Despite these inherent differences, the current ver-

sion of FIM–iHYCOM has systematic errors that are

comparable to those of CFSv2. ‘‘Comparable’’ is used in

the broadest sense: there are some fields—namely,

precipitation—in which FIM–iHYCOM (FIMr1.1) ex-

hibits larger areas of near-zero bias than CFSv2. One

area in which FIM–iHYCOM has larger systematic er-

rors than CFSv2 is in skin temperature over oceans—

both for the skin temperature of sea ice and for SST

in open waters. The errors over sea ice are primarily

FIG. 7. As in Fig. 6, but for precipitation biases (mm day21).
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related to how the single-layer sea ice model employed

by iHYCOM (appendix B) diagnoses skin temperature,

rather than errors in sea ice extent (not shown). The

open-water SST biases also warrant more attention

during ongoing and future model investigations.

Overall, systematic errors can be removed through

model bias correction. The method we chose for calcu-

lating the model climatology needed for bias correction

is described in Part II; it is used extensively there for

evaluations of model skill, and for an assessment of

model variability.

Future work includes continued coupled model de-

velopment with a focus on the ocean and sea ice com-

ponents using the NOAA Next Generation Global

Prediction System framework. In addition, advanced

physics packages are currently being tested for future

seamless weather-to-climate prediction. The model

development team is also working with the broader

research community to examine physical processes

critical to subseasonal prediction, including, but not

limited to, the MJO, blocking, and sudden strato-

spheric warming. Finally, by making FIMr1.1 hindcasts

FIG. 8. As in Fig. 2, but for a target season of JJA.

FIG. 9. As in Fig. 3, but for a target season of JJA.
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available to the subseasonal research community

through SubX, the benefits of including this model in a

multimodel ensemble can be determined.
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APPENDIX A

The Ocean Model

Like HYCOM (Bleck 2002), iHYCOM is designed

to capture the most relevant dynamic processes

affecting the global SST on all time scales, such as

wind-forced gyre circulations and boundary currents,

sea ice formation, thermally and mechanically forced

mixed layer entrainment/detrainment, small-scale di-

apycnal mixing, and thermohaline-forced meridional

overturning. Excluded, for the time being, are dynamic

ice spreading, tidal effects, and a wave submodel for

surface roughness prediction.

a. Features common to HYCOM and iHYCOM

Column physics, including the grid generator that

controls vertical placement of grid points, remain un-

changed from HYCOM. The two mutually consistent

assumptions inherent in the HYCOM design (Spiegel

and Veronis 1960)—(i) use of potential density as the

primary buoyancy variable and (ii) seawater in-

compressibility—also carry over into iHYCOM. Po-

tential density is referenced to 1-km depth in the

current version of iHYCOM.

b. Variable staggering, time step, and treatment of
barotropic mode

For historical reasons, FIM uses an unstaggered hor-

izontal mesh, generally referred to as the Arakawa A

grid, and this design is carried over into iHYCOM.

The third-order Adams–Bashforth scheme success-

fully employed in FIM (Lee and MacDonald 2009)

failed in iHYCOM because it does not permit rig-

orous enforcement of positive definitiveness in the

layer thickness tendency equation. For this reason,

iHYCOM has inherited from HYCOM the traditional

leapfrog time differencing scheme.

FIG. 10. As in Fig. 4, but for a target season of JJA.
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The reasons why multistep Adams–Bashforth time

differencing works in FIM but not in iHYCOM may be

threefold:

1) Oceanic orography is steeper than terrestrial

orography.

2) The ocean is less stratified and therefore subject

to more ‘‘sloshing’’ by large-amplitude internal

gravity waves.

3) Beyond the shelf break, iHYCOM does not use

terrain-following coordinates as FIM does; hence,

massless layers are a standard feature on the sea

floor, where they pose a particular numerical chal-

lenge due to the steepness of the bottom slopes.

HYCOM, like many other ocean models, gains effi-

ciency by separating barotropic gravity waves from

other types of fluidmotion and transmitting them using a

numerically efficient two-dimensional shallow-water

model (Bleck and Smith 1990). Such split-explicit

schemes are borderline unstable (Morel et al. 2008).

One particular disadvantage of the split-explicit scheme

in HYCOM is that it does not allow changes in bottom

pressure. This forces HYCOM users to express surface

freshwater fluxes as virtual salinity fluxes (see appendixB).

By shedding this restriction, iHYCOM is able to ex-

plicitly simulate the equatorward mass flux resulting

from the poleward atmospheric moisture flux (Huang

1993).

Despite the absence of a mode splitting scheme,

iHYCOM retains some split-explicit flavor. The 3D

momentum and continuity equations are solved on a

short ‘‘barotropic’’ time step. Mass fluxes from this in-

tegration are summed up and used to advect tracers

(including temperature and salinity) over much longer

‘‘baroclinic’’ time intervals. Column physics routines,

likewise, are called on the longer time steps.

c. Continuity equation

The flux-corrected transport algorithm from FIM

(Bleck et al. 2015) is also used in iHYCOM. Coastlines

are defined to always coincide with gridcell boundaries,

providing clean conditions for global mass conservation.

When designing the land–sea mask on the shared hori-

zontal grid, special attention has been paid to the proper

rendition of narrow passages and isthmuses affecting

oceanic flow patterns.

Bolus fluxes, needed to account for the role of

subgrid-scale ocean eddies, are based on the slope of

layer interfaces as they are in HYCOM. Specifically,

‘‘pressure fluxes’’ proportional to the pressure differ-

ential between adjacent grid points are computed on

each layer interface. The difference of pressure fluxes on

the upper and lower interface of each layer then defines

the layer bolus flux. Pressure fluxes are oriented such

that were they to act in isolation, they would flatten the

interface they reside on. A flux-limiting process assures

that bolus fluxes do not cause interfaces to intertwine or

intersect the sea floor.

d. Momentum equation

On unstructured grids, evaluation of the horizontal

pressure gradient force

a=p1=f5=M2 p=a

(where a, p, f, and M stand for potential specific vol-

ume, pressure, geopotential, and Montgomery poten-

tial, respectively) requires line integrations along the

perimeter of each grid cell. Values of the integrand (M

and a in this case) on cell edges must be interpolated

from cells in the vicinity of each edge segment. If a grid

cell happens to abut the coastline, we assign to the inland

‘‘ghost’’ point the value of the integrand in the offshore

cell. The same procedure is followed if the neighboring

cell is a massless cell on the sea floor.

Sidewall drag is evaluated by viewing the ocean bot-

tom as an assemblage of hexagonal basalt-like columns

of various heights. Consider a single coordinate layer in

two adjacent grid columns. If the layer in column 1

overlaps the ‘‘basalt’’ slab at the bottom of column 2, the

velocity vector in column 2 used for sidewall drag cal-

culation in column 1 is replaced by a linearly weighted

average of the above-bottom velocity from column 2

and a mirror image of the velocity from column 1. (A

sign changemay be involved, depending on the choice of

free- or no-slip boundary conditions.) Vertically pro-

rating the effect of sidewalls in this fashion avoids tem-

poral discontinuities in sidewall drag in layers subjected

to gravity wave sloshing near steep bottom slopes.

e. Conservation

Conservation of mass and tracers is paramount in

circulation models used in longer-term simulations. For

this reason, it is essential for layer models to solve con-

servation equations in flux form. Even so, conservation

of tracers is difficult to enforce in situations where a grid

cell loses most (but not all) of its mass during a single

time step.

The problem is caused by the need to divide tracer

amount (e.g., salt in a grid cell), which is the predictand

in the conservation equations, by layer thickness to

recover tracer concentration (e.g., salinity) after the

transport step. As layer thickness approaches zero,

meaning that the operationmoves into the vicinity of the

zero-over-zero singularity, the resulting concentration

value may lie outside the proper bounds, especially if
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mass export is large in relation to the mass remaining in

the grid cell.

As discussed in Bleck et al. (2010), the usual remedy is

to introduce upper and lower bounds on the result of the

division and to compensate for the implied non-

conservation by adding an appropriate global offset to

the tracer field. Note that nonconservation ceases to be

an issue if a grid cell loses 100%of its mass—rather than,

say, 99%.

No such remedies are needed in the case ofmass.Mass

is conserved in the model to round off error limits.

APPENDIX B

The Sea Ice Model

The sea icemodel presently employed inFIM–iHYCOM

is a very basic, thermodynamic single-layer energy-loan

model. In banking terms, the model ‘‘lends’’ energy to

the ocean— accepting ice as collateral—to keep SST

from dropping below the freezing level Tfrz. At any

given location, the ‘‘loan’’ must be paid back in full

during the warm season before SST at that location is

allowed to rise above Tfrz.

Ice formed this way gets advected by surface currents.

There is no ice rheology per se, but a shaving device

prevents excessive ice buildup by laterally spreading any

amount that exceeds a prescribed thickness.

The second task of thismodel, aside from serving as an

energy bank, is to generate an ice surface temperature

(Tskin) for atmospheric heat flux calculations. During

times when the ocean loses heat (atmospheric heat flux

Fatm , 0), this is done, as described in Bleck (2002), by

assuming that the ice–internal vertical heat flux ex-

pressed as top-to-bottom temperature gradient times

thermal conductivity matches Fatm. The physical rea-

soning here is that during the freezing season, no latent

heat sources or sinks are available at the (ostensibly) dry

ice surface to justify a heat flux discontinuity.

The above algorithm causes Tskin to approach Tfrz as

Fatm / 0, and it would yield Tskin. Tfrz when Fatm. 0.

In the latter case, the model sets Tskin 5 Tfrz. The re-

sulting flux discontinuity (zero ice–internal heat flux vs

nonzero Fatm) causes melting.

The model, which has been dubbed ENLOAN in

deference to the energy loan concept, does not carry a

separate snow layer. This limits the fidelity of the in-

ternal heat flux estimate, given the large difference be-

tween the thermal conductivities of snow and ice. An

effort is made to account for this difference by assuming

that a fixed portion of the total frozen layer is made up of

snow. If kice, ksno are the thermal conductivities of ice

and snow, respectively, and hice, hsno are the corre-

sponding ice and snow depths, the effective conductivity

of the total frozen layer can be shown to be

k
eff

5 k
ice
k
sno

h
ice

1 h
sno

h
ice
k
sno

1h
sno

k
ice

.

Reasonable values of the four parameters involved yield

an effective conductivity that is 30%–50% lower than kice.

It should be noted that the version of FIM–iHYCOM

used for this article (also used for real-time SubX fore-

casts) assumes the total frozen layer tobe ice (i.e.,keff 5 kice).

This assumption is responsible for the current warm bias

in skin temperature over sea ice regions, which motivated

the development of the equation for keff shown above.

For historical reasons having to do with restrictions

imposed by the barotropic–baroclinic mode splitting

scheme in HYCOM (see Bleck 2002), melting and

freezing processes do not involve an exchange of actual

mass between ice and ocean; instead, they spawn virtual

salt fluxes, whose purpose is to account for seawater

buoyancy changes during freezing and melting. With ice

salinity being lower than typical seawater salinity, ice

formation/melting leads to a salinity flux into/out of the

ocean. This can be thought of as a ‘‘salt loan’’ accom-

panying the energy loan.

iHYCOM assumes precipitation falling onto ice to

come down in the form of snow. Since ENLOAN

does not keep track of separate snow and ice amounts,

lumping the two together requires that snow be made as

salty as sea ice. To avoid creating an internal salt source

in the process of converting fresh to salty snow,

ENLOAN extracts the required salt amount (which is

usually miniscule) from the underlying water column.

APPENDIX C

Freshwater Budget Closure

When designing a coupled ocean–atmosphere model

for extended-range prediction purposes, there is a fine

line between essential and nonessential processes to be

included in the model. We argue that closure of the

global freshwater budget belongs to the former group.

Only part of the water evaporating from the sea sur-

face is returned by clouds shedding water directly over

the ocean; the deficit is made up by river and glacier

runoff. Lack of a terrestrial runoff scheme in a coupled

model, therefore, will cause salinity to build up near the

sea surface, with potential consequences for buoyancy-

driven circulation systems, which in turn can affect

horizontal heat transport.
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This issue is addressed in FIM–iHYCOM through a

rudimentary river runoff scheme, in which watersheds

are defined during model initialization on the basis of

terrain slope. During model integration, any runoff (the

portion of precipitation not absorbed by the land-

surface module) accumulating in a grid cell is handed

off to a lower neighbor, thereby eventually making its

way to the ocean. To keep the runoff scheme local on

distributed memory computers, the transfer occurs at

the rate of one grid cell per time step. No attempt is

made to simulate details like river flow speed or re-

tention by reservoirs, nor are all watersheds derived

from a terrain height database at 60-km resolution ex-

pected to be realistic. Furthermore, landlocked water

bodies like the Caspian Sea had to be artificially ele-

vated to provide a pathway for excess river inflow to the

ocean. These issues are ignored at present, given that

emphasis is entirely on closing the global freshwater

budget in longer-term simulations.
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